AI Becomes the Engineering Runtime: PDCVR, Agent Stacks, Executable Workspaces
Published Jan 3, 2026
Still losing hours to rework and scope creep? New practitioner threads (Jan 2–3, 2026) show AI shifting from ad‐hoc copilots to an AI‐native operating model—and here’s what to act on. A senior engineer published a production‐tested PDCVR loop (Plan‐Do‐Check‐Verify‐Retrospect) using Claude Code and GLM‐4.7 and shared prompts and subagent patterns on GitHub; it turns TDD and PDCA ideas into a model‐agnostic SDLC shell that risk teams in fintech/biotech/critical infra can accept. Teams report layered agent stacks with folder‐level manifests plus a meta‐agent cut routine 1–2 day tasks from ~8 hours to ~2–3 hours. DevScribe surfaces executable workspaces (databases, diagrams, API testing, offline‐first). Data backfills are being formalized into PDCVR flows. Alignment tax and scope creep are now measurable via agents watching Jira/Linear/RFC diffs. Immediate takeaway: pilot PDCVR, folder priors, agent topology, and an executable cockpit; expect AI to become engineering infrastructure over the next 12–24 months.