From Copilot to Co‐Worker: Building an Agentic AI Operating Model
Published Jan 3, 2026
Are you watching engineering time leak into scope creep and late integrations? New practitioner posts (Reddit, Jan 2–3, 2026) show agentic AI is moving from demos to an operating model you can deploy: Plan–Do–Check–Verify–Retrospect (PDCVR) loops run with Claude Code + GLM‐4.7 and open‐source prompt and sub‐agent templates (GitHub, Jan 3, 2026). Folder‐level priors plus a prompt‐rewriting meta‐agent cut typical 1–2 day fixes from ~8 hours to ~2–3 hours. DevScribe‐style executable workspaces, data‐backfill platforms, and agents that audit coordination and alignment tax complete the stack for regulated domains like fintech and digital‐health‐ai. The takeaway: it’s no longer whether to use AI, but how to architect PDCVR, meta‐agents, folder policies, and verification workspaces into your operating model.