How AI Becomes Infrastructure: PDCVR, Agent Hierarchies, and Executable Workspaces
Published Jan 3, 2026
Feeling like AI adds chaos, not speed? In the past 14 days engineers and researchers have pushed AI down the stack into infrastructure: they’re building AI‐native operating models — PDCVR loops (Plan‐Do‐Check‐Verify‐Retrospect) using Claude Code with GLM‐4.7, folder‐level manifests, meta‐agents, and verification agents (Reddit/GitHub posts 2026‐01‐02–03). PDCVR enforces RED→GREEN TDD steps, offloads verification to .claude/agents, and feeds retrospects back into planning. Folder priors plus a meta‐agent cut typical 1–2‐day tasks from ~8 hours to ~2–3 hours (~20 min initial prompt, 2–3 short feedback loops, ~1 hour testing). DevScribe workspaces (verified 2026‐01‐03) host DBs, diagrams, API testing and offline execution. Teams are also standardizing data backfills and measuring an “alignment tax” from scope creep. The takeaway: don’t chase the fastest model — design the most robust AI‐native operating model for your org.